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Abstract—Optimizing capital expenditure (CapEx) has been an
increasingly important objective in telco operators’ cell planning
process. Traditionally, neighbor cell relation is operationally
managed and independent from capacity planning. In this paper,
we present SCUT, an algorithm that uses massive mobile usage
records to detect clusters of possible capacity-sharing sectors,
such that capacity planning can be optimized based on coverage.
SCUT analyzes shared usage to build a graph-based model of an
operator’s network and identifies its disjoint dense components
as best-fit abstractions of clusters. Through analysis and bench-
marking on real data, we demonstrate its scalability and potential
to improve industry-standard site-based planning. SCUT has
been deployed for a telco operator in Southeast Asia.

Index Terms—CDR, Cell Sector Cluster, Shared Usage Graph,
Clique Detection, Apache Spark

I. INTRODUCTION

As 4G LTE becomes ubiquitous and 5G is on the horizon,
cell planning has become increasingly important for telco
operators. The ever-increasing demand for mobile broadband
[1], [2] necessitates denser cell deployment for good customer
experience. Hence, telco operators need optimal cell planning,
which is considered crucial to their long-term success [2].

While telco operators are under pressure to continue invest-
ing in their infrastructure, they are also experiencing overall
profit margin shrink [2]. Therefore, it is becoming more and
more important for cell site upgrades and new site deployments
to not only increase capacity but also improve Return on
Investment of capital expenditure (CapEx).

The traditional planning process assesses the network at
the cell site level. Neighbor cell relation is managed either
manually using software tools [3], [4] in earlier technologies
or automatically in LTE [5]. Independently, capacity planning
forecasts the demand of each cell site and plans appropriate
upgrades to handle the increased demand [4]. In some cases,
the handover zone could enable a cell to handle a portion
of the demand from a nearby cell during busy hours. Hence,
upgrading one cell site or one sector could potentially provide
enough coverage and capacity for the surrounding area, saving
the need to upgrade more sites.

In this paper, we present SCUT (for Sector Clustering
with User Transactions), a data-centric algorithm using users’
mobile usage records to automatically identify sector clusters
with capacity-sharing potential. The cluster information can be
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used in cell planning so that operators can selectively upgrade
sectors and not over-upgrade nearby sectors at the same time,
hence optimizing CapEx. We then study if clusters identified
by SCUT can potentially improve the planning process. SCUT
has been deployed for a mid-sized telco operator (“the Op-
erator”) in Southeast Asia, who is looking to embed CapEx
optimization into their cell planning process, and its result is
preliminarily validated by network planners from the Operator.

Contributions. This paper makes two main contributions.
First, from the application perspective, we have designed,
developed, and deployed SCUT. SCUT uses mainly Call
Detail Records (CDR), or a derivation of it. Since CDR is used
for billing purposes, it is one of the most well-maintained and
available data sources from operators. Therefore, operators can
directly employ our algorithm on their historical billing data
without collecting special data sources, such as operational
network data. Moreover, to handle a large volume of mobile
usage records that telco operators typically collect, SCUT is
highly scalable by design.

Second, within the SCUT algorithm, we utilize the concept
of shared user-hours to quantify the effective usage of han-
dover zones between pairs of cells or sectors through users’
mobile usage. In our graph-based model, we introduced two
ranking scores for cliques and use the rank to enumerate
disjoint clusters in a directed weighted graph.

We evaluated SCUT using historical data from the Operator
and proved that it can produce results using a reasonable
amount of time and resources. We also used an independent
dataset from the Operator to show the improvements of SCUT
clusters over the industry standard.

II. CELL PLANNING

A. Background

Figure 1(a) illustrates a typical monopole cell site using
directional antennas (cells). Each cell is identified in records
by its Cell Global Identity (CGI). Figure 1(b) illustrates the
theoretical wide-area coverage of multiple cell sites [6]. The
coverage of each cell site, represented by a black dot, is split
into multiple sectors (typically 3), represented by hexagons.
Each cell covers a sector. Other deployment types, such as
rooftop deployment, also employ sectorized coverage.

To provide service flexibility, 4G network operates on
over 40 standardized frequency bands (carriers) [7]. Telco
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Figure 1: Cell Planning Illustrations

operators typically install multiple cells operating on different
carriers on the same sector.

The boundary of a sector is not clearly defined and handover
zones are set up between sectors to allow the user equipment
(UE), e.g. mobile phones, within it to switch from one cell
to another for continued coverage while they are in motion.
Handover can also occur when the currently-connected cell
becomes congested and Mobility Load Balancing [8] directs
the UE to reconnect to a less congested cell within range.

When a cell site is congested, users experience lower
throughput and telco operators will take measures to increase
its capacity. From a telco operator’s perspective, the common
measures are: adding sectors through electronic beam-splitting,
adding carriers by installing new cells, and installing better
antennas [6]. Among these measures, adding carriers requires
knowledge of the existing cells in the sector, as the new cell
needs to operate on a non-interfering carrier. Therefore, a
sector is the smallest unit that allows upgrade planning.

B. Related Work

Early cell planning studies [9], [10] modeled signal strength
of a cell antenna with its physical properties, such as transmis-
sion power, tilt angle, azimuth, etc. The interactions between
cells, such as handover and interference are then defined based
on the signal strength model. These studies may not be suitable
for today’s 4G network due to its vastly increased variety of
frequency bands [7] and antenna types [6], as well as network
heterogeneity [11].

More recent works took into account some of the 4G
network complexity, such as Heterogeneous Network (HetNet)
and Multiple-Input and Multiple-Output (MIMO), as surveyed
in 2017 [11]. These works introduced new theoretical models
for inter-cell interference, multi-carrier systems and more,
while some have taken user distribution into consideration
[12]. These models could still be challenged by the complexity
of the actual deployment, and enriching with realistic opera-
tional data [13] can improve their relevance.

The total cost of ownership (TCO) is becoming a key
objective in optimizing the cell planning process [14], [15], but
variations in traffic demands, ignored by traditional cell plan-
ning approaches, can lead to capacity wastage and difficulty in
interference management [15], resulting in higher TCO. Chew,
Mo and Yeo [16] included mobility patterns in cell planning
to optimize capacity. Wang and Ran [15] proposed a new cell
planning framework to guarantee the quality of service, in
which a given region is partitioned into planning zones with
even traffic demand.

mobile usage records:
userID, date, hour, cgi, dataVolume, callDuration, smsCount
cell inventory:
cgi, carrier, lat, long, sectorID, siteID, locationType

Figure 2: Schema of Data Sources

In this paper, we aim to bridge the gap between cell-site-
based planning and demand-based planning by providing clus-
ters of sectors using user demand patterns mined from mobile
usage records. This is similar to the concept of planning zone
[15], and data in a similar format is also used to predict user
activity level [17].

III. SCUT OVERVIEW

A. Data Sources

We use two types of data in SCUT: mobile usage records
and cell inventory. Their schemata are shown in Figure 2
and are detailed in Appendix1 B. The cell inventory contains
operating carrier and other properties of each cell. The mobile
usage records describe cells that each UE used in every hour
and voice/SMS/data usage of the UE on the cell.

B. Algorithm Overview

We use the concept of shared user-hour to quantify the
effective usage of handover zones between pairs of cells or
sectors. A user-hour is a unit representing the mobile usage of
a mobile subscriber within an hour. When multiple cells are
used within a user-hour, handover has presumably occurred,
and this user-hour is described as being shared among those
cells. When more than two cells are used within a user-hour,
we simplify the attribution of a shared user-hour to all unique
pairs of cells from them. We plan to use data volume per
cell per hour to calculate the percentage of shareable volume
per cell/sector in a subsequent algorithm, hence we opted to
exclude this factor from SCUT.

SCUT is designed to run in two successive stages, as
illustrated in Figure 3.

Stage 1 attributes all observed user-hours in the records
to construct a Shared Usage Graph (SUG), an undirected
weighted graph G(V,E). Each V is a cell and each W (e), e ∈
E is the number of shared user-hours between the pair e. The
SUG is then aggregated to sector level and normalized. This
stage only runs once to generate SUG and Normalized SUG
from a massive amount of usage records.

Stage 2 runs the Bron-Kerbosch algorithm on the Normal-
ized SUG to enumerate maximal cliques. The cliques are
ranked with two ranking scores and the highest-ranked set of
disjoint cliques are selected as clusters. This stage has tunable
parameters and may require multiple runs to get satisfactory
clusters.

C. Why Bron-Kerbosch Algorithm?

There are numerous classes of algorithms that segment a
graph based on different similarity metrics, such as distance,
adjacency, and connectivity [18]. In our case, we define the

1Appendix is available at https://chen-zhe.github.io/files/2020-SCUT.pdf



Figure 3: SCUT Data Flow Chart

(a) 143-cell User-hour

(b) 30-cell User-hour

Figure 4: Cell Locations of Outlying User-hours

clusters as a set of sectors serving a similar group of users.
Hence, in the SUG (rolled up to sector level) generated with
sufficient user-hour observations, we expect shared user-hours
between every pair of sectors of a cluster. This means that a
cluster must contain a subset of vertices that are all adjacent
to each other in the SUG, which coincides with the definition
of a clique in the graph theory. Therefore, maximal clique
enumeration algorithms are the most suitable ones.

The SUG is a weighted undirected graph, however, the max-
imum weight clique algorithm [19] outputs a single maximum
weight clique and does not enumerate cliques.

The Normalized SUG is a directed graph due to the nor-
malization method used. Dense components [20] in a directed
graph are analogous to cliques in an undirected graph. Greedy
solutions such as the densest subgraph algorithm [21] solve the
densest subgraph problem, but only outputs a single densest
clique as well.

Hence, to enumerate all maximal cliques, we use the Bron-
Kerbosch algorithm [22] by ignoring the edge weight and edge
direction in a graph. Two ranking scores are introduced to
select the disjoint cliques afterward, of which the Coherence
Percentile is similar to the density definition [20] extended to
a directed weighted graph.

IV. METHODOLOGY

A. Shared Usage Graph (SUG) Generation

Step 1: Shared User-hour Attribution (Algorithm 1). Each
user-hour observed in mobile usage records gets a nominal
value of 1, which is then attributed to every pair of cells
recorded within the hour.

Table I: Coverage Range Estimates per Band
Frequency Band Urban Range (km) Rural Range (km)
LTE 700MHz 1.5 4.5
LTE 1800MHz 1.5 3
LTE 2600MHz 1.2 2

Algorithm 1: Shared User-hour Attribution
Input: C - set of connected cells of a user-hour
Output: Pairs of cells with attributed shared user-hours
for (celli, cellj)← C2 do

if distance(celli, cellj) >
range(celli) + range(cellj) then

return no attribution as user is moving
end
return (celli, cellj , 1.0/size(C)) for
∀(celli, cellj) ∈ C2

However, a user could travel a great distance in an hour,
as shown in Figure 4 (the underlying map is not shown).
Attribution of such moving user-hour would not accurately
describe the load-balancing handovers between cells. To filter
them out, we obtained a set of estimated band ranges (table
I) from the Operator’s network engineering team and remove
user-hours that cannot reach all used cells at a single place.

Step 2: SUG Aggregation. To generate the cell-to-cell SUG,
the attributed user-hours between every observed pair of cells
from the entire mobile usage records are summed up to
become the edge attribute between vertices representing cells.
The cell-to-cell SUG is then rolled up to a sector-to-sector
SUG, but any shared user-hours between cells in the same
sector would be removed.

Step 3: SUG Normalization (Algorithm 2). Global normal-
ization methods, e.g. min-max scaling, would skew the result
for vertices with low shared user-hours over all its edges.
Our method normalizes edge attributes locally with regard
only to its adjacent edges. It avoids the aforementioned issue
but results in a directed graph, as each edge attribute gets
normalized to two different values, that is, one per normalized
edge direction. The normalized attribute of each edge is
bounded between 0 and 1.

Time Complexity (detailed in Appendix D2). O(r(1 + c
u ))

in the worst case, where r is the number of rows in mobile
usage records, u is the number of users and c is the average
number of cells that a user connects to within an hour. Thus,
the runtime of this stage is linear to r and c.

Algorithm 2: SUG Normalization
Input: A - Adjacency matrix of SUG (Aij = Aji)
Output: A′ - Adjacency matrix of Normalized SUG−−−−−−→
rowSum← A · Column Vector ~1
foreach i ∈ row index of A do

A′i ← Ai ÷
−−−−−−→
rowSumi

end
return A′



Algorithm 3: Clique Enumeration
Input: GN - Normalized SUG
Parameter: w - minimum weight threshold
Output: list of cliques as set of sectors
GF ← G(V ∈ GN , {E|E ∈ GN ,W (E) > w})
cliqueList← BronKerbosch(GF )
for VSet ← cliqueList do

if |VSet| ≥ 3 then
subCliques← ∀S ⊂ VSet, |S| ≥ 2
cliqueList← extend by subCliques

end
return cliqueList

Algorithm 4: Ranking Scores Calculation
Input: cliqueList - list of cliques as set of sectors
Input: ES - SUG edges. W (E) retrieves shared

user-hours
Input: ENS - Normalized SUG edges. W (E)

retrieves normalized weight
Output: list of cliques tagged with Total User-Hours

(TUH) and Coherence Percentile (CP)
for VSet ← cliqueList do

TUH ←
∑

v1,v2∈VSet
W (ES(v1, v2))

CP ←
⌊∑

v1,v2∈VSet

100·W (ENS(v1,v2))
|VSet|

⌋
VSet ← tag with TUH and CP

end
return cliqueList

B. Cluster Assignment

Step 1: Clique Enumeration (Algorithm 3) is further illus-
trated in Appendix C. The Normalized SUG has its edges
lower than minimum weight threshold (w) removed. It is then
treated as an undirected graph by ignoring edge weights and
directions. If a pair of vertices have one or more edges, the
undirected graph will have one edge. Bron-Kerbosch algorithm
is then applied to get a list of maximal cliques.

Sub-cliques of maximal cliques with at least three vertices
are also enumerated. As such, if one vertex of a 3-clique
gets assigned to another cluster due to higher ranking, the
remaining 2-clique may still be assigned as a cluster.

Step 2: Ranking Scores Calculation (Algorithm 4). We intro-
duce two ranking scores for the cliques: Coherence Percentile
(CP) and Total User-Hours (TUH).

CP is the integer percentile of the average percentage
of shared user-hours of a sector to a particular clique. A
clique is considered more coherent if more shared user-hours
(handovers) is observed within clique members rather than
between clique members and non-clique members. This score
is agnostic to clique size and is bounded between 0 and 100.

TUH is the sum of shared user-hours attributed to all edges
within a clique. This factor generally favors larger cliques and
a bigger value is desired, as a bigger cluster is of more interest
than a small cluster. TUH is unbounded.

Step 3: Disjoint Cluster Assignment (Algorithm 5). After

Algorithm 5: Disjoint Cluster Assignment
Input: taggedCliques - list of tagged cliques
Parameter: minCP,minTUH
Output: Cluster Assignment
visitedSectors← ∅
assignedClusters← ∅
filter taggedCliques by minCP and minTUH
sort taggedCliques by CP and then TUH
for VSet ← taggedCliques do

if visitedSectors ∩ VSet = ∅ then
visitedSectors← visitedSectors ∪ VSet

assignedClusters← add VSet

end
return assignedClusters

filtering out cliques without sufficient Coherence (minCP) and
TUH (minTUH), all cliques are ranked in descending order
by first CP and then TUH. Traversing through each clique in
sorted order, a clique that is disjoint with previously-selected
clusters is selected as a cluster. Sectors without any cluster
assignment will become single-sector clusters.

Time Complexity (detailed in Appendix D3). O(a(m2 +
log a + 1)) in the worst case, where a = 3s/32m, s is the
number of sectors on the network and m is the average
clique size. In our experiments, the SUG is sparsely connected
with mostly 2-cliques and 3-cliques, thus this stage is still
reasonably fast.

V. EXPERIMENTS

A. Experiment Setup and Data Sources

To study how the three parameters described in section
IV-B impact the clustering stability of SCUT over time and
to benchmark its performance against the site-based planning
approach, we ran a grid search on SCUT with multiple
combinations of the parameters and validated results with an
independent dataset.

We obtained one month (30 days) of anonymized na-
tionwide mobile usage records and cell inventory from the
Operator as inputs. We also obtained cell performance data
(schema shown in Appendix B) from the Operator’s Operation
Support System (OSS) for the same month.

The mobile usage records have 13 billion rows, from
which 5.5 billion user-hours are observed. Figure 5 shows the
distribution of the number of connected cells of every user-
hour. Since CDR only captures active usage, users’ network
idle time, e.g. during sleeping or surfing with WLAN, is not
represented. 46.1% of the user-hours connects to a single cell,
and 99.9% of the user-hours connects to less than 30 cells (we
used this value as the threshold of moving user-hours).

We selected two outlying user-hour examples and plotted
locations of the observed cells onto a map in Figure 4. As
the cells in both user-hours are close to major roads, we can
conclude that these users are moving within that hour. Our
filter described in section IV-A effectively removed them while
keeping 92.7% of multi-cell user-hours.
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Figure 6: Exact Match Percentage Distribution

The cell inventory shows that the Operator owns around
200,000 cells across the country, installed on more than 8,000
cell sites. Each site contains 3 to 6 sectors. We choose to only
include outdoor cells for clustering since indoor cells have a
limited range and a different site definition.

The cell performance data has the hourly transmitted data
volume from each cell.

In terms of performance, SCUT is implemented in Scala on
Apache Spark and is tested on a Hadoop cluster (CPU: Intel
Xeon E5-2640 v3, OS: Red Hat Enterprise Linux 6.9) using
106 cores and 421 GB RAM in total. The SUG Generation
stage generated the SUG and Normalized SUG using all
records in 49 minutes. The Cluster Assignment stage generated
a list of hard clusters in two minutes.

B. Stability Analysis

We partitioned 30 days of data into three disjoint segments
of 10 consecutive days and ran SCUT with each segment using
all combinations of the parameters shown in Figure 6. We then
calculated percentage of the same cluster being detected from
all three segments as |R1 ∩R2 ∩R3| ÷max(|R1|, |R2|, |R3|),
where Rn is the set of assigned clusters using input from
segment n. Figure 6 shows the variations of percentage when
one parameter is fixed.

This analysis shows that with proper parameter settings,
SCUT is able to achieve over 80% exact matches between the
segments and over 90% when partial matches are included.
Figure 6(b) also shows that increasing minCP significantly
improves the stability of the result. This is consistent with
the design of the CP score.
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Figure 7: Normalized Nationwide Daily Patterns

C. Benchmarking Against Industry Practice

If sectors on the same cluster serve a more similar group
of users as compared to sectors on the same cell site, we
may conclude that clusters are more consistent for planning.
To benchmark, SCUT ran on the full month of data, so the
observed shared user-hours roughly triples as compared to
section V-B and the maximum minTUH tested in this section
are tripled as compared to Figure 6(c).

We assume that when cells serve a similar group of users,
they exhibit similar daily usage patterns. We use the time series
of the hourly data volume of each cell per day (from OSS data)
to represent its usage pattern of the day. Each aggregation unit,
i.e. sector, site or cluster, uses the aggregated data volume from
all cells within to represent its usage pattern. We use Cosine
Similarity (Appendix A) to quantify the similarities between
two time series A1..24 and B1..24.

All cells exhibit a similar usage pattern due to human
diurnality, as shown in Figure 7 by summing up the data
volume from all cells in every hour of a day. To mitigate any
bias introduced by such patterns, we adopt the concept from
Cosine Similarity to normalize each time series using equation
1 and use the residual pattern residualAi = normAi −
normNationi(daily) of each cell for comparison instead.

normAi =
Ai√∑n
i=1 A

2
i

(1)

For clusters produced by each set of parameters, we calcu-
late similarities between the pattern of each cell and that of
its sector, site, and cluster, and then characterize the overall
similarity between cells and each of the aggregation units by
its mean x̄ and standard deviation s. Only multi-sector clusters
and sites containing cells from these clusters are included in
the similarity comparison.

The result shows that overall, cells in the same sector behave
33.6% more similarly (x̄ ≈ 0.524) as compared to site (x̄ ≈
0.392). This is expected as cells in the same sector face the
same direction, and therefore cover a similar area and users.
A cell site contains different sectors, hence covers a wider
variety of users. This also proves that our previous assumption
is accurate, to a certain extent.

Equation 2 scores the result of SCUT with a set of param-
eters. It jointly evaluates the improvement in the similarity
of clusters over that of cell sites, and the closeness of the
similarity of clusters to that of sectors, which are shown to be
better.

score =
x̄cluster

x̄sector
− x̄site

x̄cluster
+

ssector
scluster

− scluster
ssite

(2)
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Figure 8 summarizes the residual similarity of the best
five sets of parameters. Using the best one (minWeight=0.3,
minCP=40, minTUH=30000), SCUT clusters are able to ob-
tain 5.1% higher similarity as compared to sites, while sectors
obtain 31.2% higher similarity. Sectors within a cluster may
only partially serve the same group of users, so the minor
improvement still shows that user overlap is greater for sectors
in a cluster as compared to those in a cell site.

With the best set of parameters, we assigned 1465 multi-
sector clusters, of which 485 are 3-sector clusters and 980
are 2-sector clusters, partially illustrated in Figure 9. 25.9%
of the clusters detected are equivalent to the operator-defined
cell sites, confirming that in some cases, a site is still a
good representation of a cluster of sectors. As this parameter
set gives the most confident clusters, only 13.8% of sectors
owned by the Operator are clustered, and an operator can use
them to aid their traditional planning process. Urban areas
are more densely covered, so defining tightly-linked clusters
could require a different set of parameters as compared to rural
areas. Rural areas appear to be more optimized using this set
of parameters, as more clusters span across different cell sites
in rural areas.

VI. CONCLUSION

Driven by a telco operator’s need to optimize cell planning
for CapEx, we developed SCUT to identify sector clusters
with capacity-sharing potential using available data sources
at a massive scale. It is fully data-driven and models a
network from the perspective of users. It identifies sector
clusters for demand-based planning. Since sectors in a cluster
potentially share user load, operators can avoid over-upgrades,
leading to more optimize CapEx. We learned from experiments
that sector-based demand analysis is the most consistent, but
clusters can potentially reduce capacity wastage during cell
planning and are still more consistent than industry-standard
planning with cell sites. The algorithm has been deployed in
the Operator’s environment and has received some validation.

In our future work, we plan to get more relevant data sources
to measure the performance of SCUT. We are also keen to
explore other use cases of the SUG using graph algorithms.
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APPENDIX

A. Cosine Similarity

Similarity between two n-dimension vectors A1..n and B1..n

is defined as: ∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(3)

B. Detailed Data Schemas
Mobile Usage Records

Field Name Data Type
userID String
date String
hour Integer
cgi String
dataVolume Double
callDuration Double
smsCount Long

Cell Inventory
Field Name Data Type
cgi String
frequencyBand String
lat Double
long Double
sectorID String
siteID String
locationType String

Cell Performance
Field Name Data Type
cgi String
date String
hour Integer
dataVolume Double

C. Shared Usage Graph and Clique Enumeration

Figure 10: Shared Usage Graph Illustration

Figure 10 is a shared usage graph. Each vertex is a sector
and each edge is tagged with the shared user-hours between
two sectors. Different line types show different maximal
cliques in the graph.

Maximal cliques: {A, B}, {C, D}, {B, C, E, F}
Sub-cliques of {B, C, E, F}: {C, E, F}, {B, E, F}, {B, C,

F}, {B, C, E}, {B, C}, {B, E}, {B, F}, {C, E}, {C, F}, {E,
F}

D. Time Complexity Derivation

1) Assumptions and Notations: Assuming the following
components are used in implementing the algorithm:

• Hash tables with amortized O(1) access time
• Sorting algorithms with O(n log n) run time

Denoting the quantities of the following SCUT algorithm
inputs:

• r: number of rows in mobile usage records
• u: number of users
• c: average number of cells that a stationary user connects

to within an hour
• s: number of sectors on the network
• m: average clique size (number of vertices in the clique)

2) Share Usage Graph Generation: In step 1 (Shared User-
hour Attribution), a full table scan is first performed on mobile
usage records to collect connected cells per user per hour. By
using a hash table with each unique user-hour as a key, this
would take rO(1) = O(r) operations to complete. This step
would produce an intermediate result of r

uc rows describing
every user-hour. For each user-hour, filtering of moving ones
and nominal value attribution run on every pair of cells, i.e.,
cC2 = c(c−1)

2 pairs within each user-hour. Thus, another
r
uc

c(c−1)
2 = r(c−1)

2u ≡ O( rc
u ) operations are needed and this

generates an intermediate result of O( rc
u ) pairs.

In step 2 (SUG Aggregation), a full table scan is performed
on all pairs of cells discovered in step 1. Using a hash table
to record sector-pair-wise shared user-hours, O( rc

u ) operations
are required to generate the sector-to-sector SUG as a list of
adjacent vertices.

In step 3 (SUG Normalization), a hash table is first used
to accumulate total shared user-hours per sector. This can be
done co-currently with step 2. In the worst case, each cell is in
a unique sector, thus the sector-to-sector SUG is the same as
the cell-to-cell SUG. To normalize the SUG, O( rc

u ) operations
are needed to scan through the SUG.

In total, the time complexity of the Shared Usage Graph
Generation stage is O(r) + 3O( rc

u ) ≡ O(r(1 + c
u )).

3) Cluster Assignment: In step 1 (Clique Enumeration), an
optimized version of the Bron-Kerbosch algorithm is used,
which has a time complexity of O(3s/3) to enumerate at
most 3s/3 maximal cliques (On Cliques in Graphs, J. W.
Moon and L. Moser, 1965), where s is the number of graph
vertices (number of sectors in our case). Each m-clique has∑m−1

i=2 mCi =
∑m

i=0 mCi−mC0−mC1−mCm = 2m−m−2
sub-cliques. Hence, there would be at most 3s/3(2m−m− 1)
cliques and sub-cliques and enumerating all cliques takes
O(3s/32m) operations.

In step 2 (Ranking Scores Calculation), we implemented
the SUG and NSUG lookup using the sector-pair-wise hash
tables on each pair of vertices within every clique. A m-
clique has mC2 pairs of vertices. Thus, this step takes
O(3s/32m)m(m−1)

2 ≡ O(3s/32mm2) operations.
In step 3 (Disjoint Clique Assignment), the cliques are

sorted with a good sorting algorithm in O(a log a) time and



then looped through in O(a) time, where a = 3s/32m. Thus,
this step takes O(a log a) time.

In total, the Cluster Assignment stage takes O(a) +
O(m2a) + O(a log a) ≡ O(a(m2 + log a + 1)), where a =
3s/32m.


